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~$ ~A1V~DC il 1C~hIGO0 SHORT PULSE
~UWI4TEK 51 PLASMAS.,,, .

"k.1LAWWi bi laes radiation booms with plais plays an

rl AIn waf.t1.3 .ares a livn fusion, lon spheric processes and

0*6Ieists s. fmeently the posibility of employing Intense laser beams

to aje U-ft eleftum' to ulti-lUgh energles has also stimulated interest In

MUM& selt-fosunig In plasa. 1" 14 One such laser driven acceleration

saem is the laser beat wave accelerator. This is a collective acceleration

Sm %tlh utilis a large amplitude plasma wave with phase velocity

alleftly les than the velocity of light to accelerate charged particles. The

lar solitude plasm wave Is excited by the nonlinear coupling of two

Iftem law beams propagating through the plasm. In this process the two

laser beam with frequencies *,, 2 and corresponding wave numbers k1 , k2

couple through the plasm to produce a ponderomotive wave with frequency

l 1 -2 and wave number k1 - k I2. I pe, the plasm wave will

initially grow linearly in time. If the laser frequencies are much greater

than the ambient plasm frequency, up., then the phase velocity of the

ponderomotive wave Is nearly equal to the group velocity of the laser wave.

Electrons which are either injected into the plasma or part of the thermal

tail of the plasma distribution can be accelerated by the large gradients

associated with the plasma wave.

In this paper the self-focusing properties of a plasma on an intense

electromagnetic beam are studied.15-22 The propagation of an Intense

radiation beam in a plasma can result in self-focusing by creating a density

depression in the plasma as well as by increasing the electron mass by

relativistic effects. The density depression is due to transverse

ponderomotive forces which tend to expel plasma from high field regions. The

radial ponderomotive force on the electrons is larger than on the ions by the

Manmmri approved January 20, 1917.
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~4met of 00 w'aiatIea bow region set up an

VRS ~ ~ vefe 4L a slWs" tiM MS,,e causes the tons

A th dW epunt lon AMe "to up the eleeetrotatic

fWq nNO OWq a Ofte leafthich to semmed small ompared to

~ ~IMISbeS reb. This density depress ion create* a local Increase

is N ermal lEe of refrein and sets as an optical guide for the

reu lee ben. In addition to thia self-foauing inschanism a further

redeftiesI as piasms frequency oeurs in regiona of high field intensity

de to the relativistlo cm inerease of the electrons In the presence of the

redistion ban. The self-foouIng due to the denaity depression occurs on a

leghu time aoale than dms the relativistia mass inorease self-foouaing

erteet. When the ponderamot ve pressure ia sucfc les than the plamna kinetic

pIessur the time scale for the density depression to occur iAs 1 - R/C$3

Wre I La the radiation beam radius and C3 Ls the Lon aouatic speed. Since

A Is aginG such greater than the Debye length, the oharacteristic time is

greater than the Lon time scale (t >> v ). On the other hand, the time

scale far the relativistic mass Increase is u where a Is the radiation

frequency and Is assumed mauch greater than the electron plasm frequency.

Previous research on self-foousing was primarily concerned with the

ponderomotive self-fousing effect. 1 5- 17  ax15 presented steady-state

solutions for the radiation bean structure due to ponderoiotive self-focusing

In a nonrelativistio plasma. In this treatment it was assumed that the plasma

had attained equilibrium with the radiation field and, hence, the plasm*

density was represented by a Boltzman-type response, n - exp (e p/T ), where

*p Is the ponderomotive potential and Te is the electron temperature.

Felber16 performed a similar treatmnt of ponderomotive self-focusing with the

Inclusion of relatitistic effects and, again, the assumption of an equilibrium

2



' aem"WIt EiSviWIieS" n aste. heb treatments. using an

': pS ieft Feespae. ae lnid far murt redatio pulses,

I 4 %! , h w Sirt time sle, the plain tons can not respond to the

9si~Igo tee.

s pmeme af rlaotivistio self-recasing alone, valid for short time

00600 O too density repeads to p nderomotiv. force, has been considered by

M at 6l.., 1 Spngle and TingtS1 9 WAd midt and orton.20  Numerical

imlatom ae alo bee attempted for arbitrary time including the coombined

offeets of relativistic, pouderomotive and thermal self-focusing. 2 1 ,22

This problem of self-ftouing in the transition period during which the plasma

Profile begins to respond to ponderootive forces and thermal heating will be

addressed in a later paper.

The analysis presented here vill be concerned only with relativistic

self-tousing on a time scale sufficiently short so that the plasma density

profile does not evolve significantly under the influence of the radiation

bee. This implies that the pulse length of the radiation beam, TL' must be

short compared to 't and, of course, long compared to a radiation period, R"

The relativistic self-focusing effect is analyzed for a helically

polarized bem propagating in the z direction. The beam is assumed to be

axially sy trio with respect to the z axis and has a profile which is only a

function of rz and t. An equation which describes the envelope of the

radiation beam is derived. The envelope equation includes diffraction effects

as well as relativistic plasma effects and has a form similar to a particle

beam envelope equation.23,24 In the present radiation beau envelope equation,

diffraction effects are manifested through a term which is equivalent to beam

ettance in the particle beam envelope equation.

3



:WW . UesUy po laiseo reeeatIo be . propagatin wthla a cold
im U imp. Th rem te too r erntal fthefield Istaen to have the

(rfs MArl) ( -t)e i (kZ-t)..*N y

*AmOv Urs WItude £(rzs) is a slowly varying fimation of r and a, and the

freqmae 41 Is aseumd to be nActa greater than the effective plasm

frrquasoy. The approximate local dispersion relation associated with the

field In (1) is

a a Ok # (a 2  4 (rz))/2ck, (2)

2 2 1/22 2 2
Wwrne k .-(k I +k 7) is the transverse wave numwe, k < and u2(r.z)

is the effective background plasm frequency. For purposes of this discussion

the effective plasm frequency Is written in the form

2
(r.:) - n or.:) 'g(oo ) (3)
p1 n a Y (r,z)'

ere Upo - (4lI1e12 n /a )1/2 Is the ambient plasma frequency, n(r,z) is

the modified electron density of the plasma due to the excited plasma wave,

Y1(r,z) - (l+a2(r,z))1/2 is the relativistic mass factor and a(r,z) -

JeIA(r,z)/moc2 Is the normalized laser field amplitude. The relativistic

factor T I arises from the plasma electrons' relativistic mass change due to

their transverse oscIrlations in the radiation field.

4



VO W ray eq~ttcs tram geometric optics, the transverse mot ion of

Vie )tr~eIs rays wre given by

4.,.

1' - -ka

k m ,(14b)

dt -j

-- 1

byer (2) Sustting y(t) int 4)ad(b ils the transversepoionoa ray

dt 2

d. y; +20.(b

dt2  2 -

a. (rzz x 2 P0, (5c)

2k-

and

ap 2  n(r,z)/n 0(d

3r a1po Ir'(I~ . 2 (r,z))1"

Equations (5a~b) describe the transverse motion of the rays and assume that

the rays travel near~ly parallel to the z axis, i.e., Idx/dtl, Idy/dtl <<

va a c where v 9 is the group velocity.



ce avelos. Bet ion
.36 0" &Ob4t'o a envelop equation is derived Whioh describes the

"Wwvuo, 4yfwaios of the radiation bean envelop. as it propagates through a

plaw. The derivation is similar to that used to obtain a particle beam

eAvlpe* equatIon 2R in the sens that the ray equations in (5a,b) havea

frm whiob is similar to particle orbits in the paraxial approximation.

To this end, various moments are taken of the ray equations given by

(5). Multiplying (5a) by ; and dx/dt, (5b) by ; and dy/dt and combining.

yields the following virial and energy equations

1ld2; _-2 402---;)2
2 drztr 0, (6a)

dt+a(i d 0,(b

where ;2 (d/d ;2 ad ; - 2 Substituting (6a) into (6b)

yields

.1 .13r2 . 2g 2r
2 dt3 dt d

To obtain the envelope equation, consider a thin slice of the beam lying in

the transverse. The transvers segment of the beam is assumed to consist of N

Individual rays traveling through it. The mean square radius Of the radiation

beam envelope is then defined as

Rzt <;2> _- (8)

6



Ue.; Is ltaUr radial position of th Lt. ray and > denotesw th averaging

Opetion. Mathemnatically, this averaging can be written in terms of an

Integral ovrthe distribution function of Initial ray positions at the

initial time t0 ,tr(;Oto).

<Q *) ajdr ; 0f(; 0 t )Q(r), (9)
0

where Q(;) is a quantity dependent on the ray position 0 P r t).

Performing this average over all the rays on (M and using (8) gives

3R 2- 2

2 dt 3  dt dt- 0.()

In order to express the averages In (10) in a more manageable form, the

Individual radial ray velocity is'written as a sum of a man velocity term and

a residual velocity term. That is the individual ray velocity Is written as

-: rR +

where (;/R)dR/dt is defined as the mean radial velocity at the ray position

and 8; rIs the residual radial velocity. Substituting (11) into the last term

In (10) yields

<2 d 2  
2 g2> dRdt 2 26;>.(2

<9 t- 2< R +r (2

To further simplify (12), notice that

7



14~2 it'

43r> a (13)

Nons <;4;) -0. Slalarly, assuming 0F" a n WW" enc is a constant,

-n-r ;> n-1 43 -n-1

Newse, the conclusion is reached that <r'g;> - 0 tor any positive integer .

Assuming that 9 C(r) can be expanded in a power series of r implies that

<22;4; - 0. Tu,(12) becomes

2 dt 2<9 r 2> i t- (15)

Substituting (15) into (10) yields

I d3R2 + j <g2;2> + 2<g2;2> dR/dt . .(16)
2 d3 dtR

Since the last two terms in (16) combine to give R_2 d(R2<92 ;2> )/dt, (16) can

be written as

d [R d2RI dR22+22<22].0 (17)
Rt dt id

Integrating (17) and taking the constant or integration to be 2c 2 c2 gives

8



+ - 1- 0,
dz R

* iAee 2 - 2/02 and -ct.

Iqutiof (18) describes the evolution of the radiation beam envelope, R,

as tum ntio of z. Diffraction effects which result in a spreading of the beam

we oontained in the constant of integration term e. The form of the envelope

equation for the radiation beau, (18), is similar to the usual particle beam

envelope equation. The second term in (18) can be either focusing or

defocusing depending on the sign of a2. In the present situation, because of

the relativistic transverse oscillations of the background plasma electrons,

this term results in focusing of the radiation beam. The third term in (18)

is always a defocusing term and is due to diffraction effects.

The diffraction constant e2 can be evaluated for the special case of a

Gaussian ray distribution. Using the definition in (9) and requiring <1> - 1

and <;2> - R2 then Implies

- 2/ 2

f( O,to) - R 2 e (19)

Since the density of rays is proportional to the intensity of the radiation

field, this implies that f(;0 ,t0 ) is proportional to a2 (;0 ,t). In standard

notation, the vector potential of a Gaussian radiation field is written as

a R -r2/R
2

a(r,z) R 3(z (20)

where R3(Z) is the spot size, Rso the minimum spot size and ao is the

normalized peak radiation amplitude. In a vacuum, Rs(z) is given by

9



JF'' -Z.S)2 1/2

R (z)R i - (21)

Who"..- kR9 /2 Is the Rayleigh length25 and zis the axial location of the

.AsM m epOt -aise.

Since f( 0,t) is proportional to a 2 (;0 t), then by comparing (19) and

(20) implies that-the mean-square radial ray position is related to the spot

size by R2 . R2 /2. Rewriting the envelope equation (18) in terms of the spot

size R. gives

+2R -~~2 0. (22)

dz 2  R 3 R
5

The Integration constant c0can now be evaluated by using the vacuum solution

(21). In vacuum, <; 92 and, hence,3 c - 4/k 2. Notice that
0

cc a A/v -R so 8Od' where A *2w/k and ed - A/CuRs0 ) Is the well-known

diffraction angle. 25

Solution of Envelope Equation

In order to solve the envelope equation (22) it is necessary first to

evaluate the average of the quantity ;2 K2, where

;2K22- Np/2'1 (23)
2c 2 k2  3; (1i a 2(;.i))1/

where I - 1%.,0 and - at + z0.

Recall that the averaging can be written In terms of the distribution of

Initial ray positions f(;r0 t 0) as in (9). Notice that it 1s Possible to

define a Eulerian ray *distribution function at position r and time t as

follows:

10



_ Cmw1dr uov the average of the quantity Q(r) defined by

CQ(r)> & firrr(rt)Q(r)
0

*Jdrr J; d r 0ot)6(r 0 t))Q(r)
o 0

r 0 t( *t)Q(;)
0

< CQ()>. (25)

Hanoe, the averaging <Q(;)> can be replaced by an Integration over the

Sulerian spatial coordinate r providing the distribution t(rt) is known.

Since there Is no hope In deterninng an analytic expression for the

distributio. t(rt), In order to obtain an estimate of < 2K2 >, it will be

assumed that the radiation beau retains a G&ussian profile as It propagates

through the plasma. Thus, t(r,t) will be approximated as

f(rz) - 22 a (r,z) (26)

where z - ot * zo and a(rz) is given by (20). Notice that <1> 1 and

<r2> R2/2. Using this expression, then <r2K2> becoms

2X>D 2 2 n(r,z)/n0
<r 2( ka f r ra r 2 sar~)1/2

00 so 0(1.a (r,z)) 1

2 w --n(s)/n o

S0x 1.'-20-S 1/2, • (27)

!1



oiuR /(R a )
a 00

sm Os of a constant density background plasm, n(r) it for

t~ 41A 4(r) a0 for' r > p then (27) can be evaluated analytically. For

OWS a lettIng v a *te

2
x .J 2 fli~i) - (x)(l-Iny) I nU1~I (28)

AMe0 h - (1#x-2) 1/2 -11/2, g - (+X- 2 yp12- 1/ and y, exp(_21t2/R).
p

It Is insightful to write the envelope equation In terms of an effective

particle located at Ra(z) moving In a potential V(R.). Equation (22) becomes

d2% aV(R )
-z - R (29)

a [(x) - g(z)(l-Lnyb- tn(~~]- (30)
5R 02k2 &2 2ba k 2R3 9

with x oR/(aR, )and ypa exp(-2R2/R2)
5 050 P pa

Envelope Behavior

To analyze the behavior of the radiation envelope, it is Most convenient

to use the normalized envelope radius x m R a/(a 0R so). In the limit R p *-

then (30) can be written as

d2 x V a - (31)
dt 2  o X

where

12



Z' - 16 ( x )'2/2-1) 21n2

- : - 21n((.x'2 )1/2 * 1)], (32)

AV 0  (20M11R 2 a2))2 and a (u a Rs 1(11)32.

l abo. equation describes the position or a particle x(t) moving in the

effective potential V(xe). In the expression for aV/Bx, the first term on

the right ot (32) represents vacuum diffraction whereas the term proportional

to a represents the relativistic self-focusing of the plasma.

It Is Interesting to note that the shape of the potential V(x) depends

only on the parameter a. As will be shown below, a can be written as the

laser power over the critical power. For a > 1, the potential V(x) has a

aini mm and bounded oscillatory solutions for x(t) are possible.

Expanding V(x) for large x (small ao) gives

V . x-3 X. (33)

For a - 1, there are no net diffraction or focusing forces (to leading order)

and a matched radiation beam is possible. In this limit (x >> 1), the

envelope diffracts for a < 1 and focuses for a > 1. Since the total radiation

power is given by P - (mec2a oR s) 2 /(8ce 2 ), the parameter a can be written

as a - P/P ,t, where the critical power is given by

2mce  2 2 92 •

Petit . 2c(-e-) 2--. - 17.4 x 109 w2 Watts. (34)
• po 'po

13



V~ttforx >> 1, and a> 1, then the radiation

'kes )U1 z"1 mV. (33) is no longer valid. Expanding (32) for emall

-ft x 3  1 6a. (35)

to,:tlosc (35) states that for a fixed a > 1, focusing will continue until the

dhtrs@on ters dominates when x3 < 1/(16*). Hence, at a sufficiently

:011 xv the envelop* will be rofleoted back out towards its original width.

-- ke. this occurs the envelope radius x will either oscillate between its

p " laa value at reflection and its original value, or it will continue to

ditfraot indefinitely, depending on the envelope's initial "velocity" (the

Initial slope in x(t)). For a given a > 1 and an initial x >> 1, if the

Initial slope dx/dt is sufficiently small, then x(t) will oscillate between

Its Initial value and its value at reflection. If dx/dt is initially large,

X(t) will initially decrease to its minimum value at reflection and then

Increase Indefinitely.

The exact shape of V(x) for a given a must be determined numerically. In

general, If a > 1 then there will exist a finite well whose minimum occurs

at xf. As a Increases, the depth of this well increases, the well becomes

narrower and the location of the minimum xf decreases. The potential V(x)

Is plotted In Fig. 1 for a - 5.0 and Fig. 2 for a - 1.2. Notice that xf - 0.4

for a - 5.0 and xf . 1.8 for a - 1.2.

Recall from the vacuum solution that the minimum of Rs/Rso0 in vacuum is

unity. Hence, the minimum for x in vacuum is x - 1/ao . Ideally, it is

possible to have a nonoscillating envelope of constant radius if the radiation

14



via**u t't t tith x(t0 ) x and dx/dt -0. This corresponds.,, u0 f

ering the plasm precisely at the bottom of the potential

eU , v& sero velocity. In vacuum, dx/dt - 0 at the minimm spot size

Irs Rs and, henoe, x , 1/a_. In order to achieve a nonoscillating solution,

It 1 6requirod that x(tO ) - xf t 1/a. Hence, for a - 5.0 (a - 1.2) a

. aos oiflating matched bea would be possible for ao - 2.5 (ao - 0.55)

prOvided tha radiation envelope enters the plasma with zero slope, dRs/dZ 0.

Sie current technology limits ao < 1, operation In this constant envelope

mode is possible only for a slightly greater than unity.

In practice, It may not be possible to achieve a radiation beam which

enters a plas with dR /dz - 0 and x - xf. However, It may be possible to

operate near x - t fwith a mall initial dx/dt. In this case, when

z a x f 6x with 6z smal, the envelope equation (31) can be expanded to give

82 0 2 (36)

where

SW " V7 f).(37)
f (1xf x / )

For the parameters a - 1.2, ao - 0.55, R3 - 0.1 cm and w/w - 10, this gives
21 2 6

x f 1.8, Ao0 - 2 o/wa - 43.5 ca and wos 2PO 3 - 10" . The Rayleigh length

for this case is ZR a .0 cm.

rigures 3-6 show numerical results for the envelope behavior for a test

case where a - 1.2, Rso - 0.1 cm and w/opo - 10.0. The critical power is

given by Porit b 17 x 10 W, the well minimum occurs at x f - 1.8 and the

oecillating wavelength in the well is Aox U 44 cm. Figure 3 shows operation

at ao - 1ixf 0 0.55"ahd with zero initial slope, dRs/dz - 0. This is the

condition for a nonoscillating matched beam. Here P 0 2.1 x 1012W,



012 -o1 1

2. x 10s , 12- 2.4 1013se" 1 and the Rayleigh length 1s

a *4.0 cn. Figure 4 show a case with ao slightly less than 1/xf - 0.55

vth zero Initial slope, while Fig. 5 shows a case with a. - 0.55 and a small

inItial slope. In both these oases, the envelope shows a small amplitude

osIllation whose wavelength Is given by A - A 0 a44 am. Figure 6 presents a

case where a. << 0.55 (initially, x >> 1) and with a significant initial

slope. Here the initial slope is determined by specifying zo where
2/ 2 1/2

Rs(z) - 2(1 + 1/2) before entering the plasma at z - 0. For this case,

the radiation Initially focuses down to a value significantly less than R30

("over-focusing") and then is reflected and diffracts indefinitely.

When larger laser powers are used (larger values of a) the results are

qualitatively similar except the potential well is now deeper, narrower and

has a minimum occurring at a smaller value of xf. For example, when a - 5,

Rso .1 cm and w/up - 10, then xf 0.41 and xoe u 8.9 cm. A nonoscillating

matched beam requires ac u 2.5 and no initial slope. For % 2.5, this gives

Pcrit - 1.7 x 10'W, P - 8.7 x 102W, wp 0 1.1 X 1012se"C 1 , w - 1.1 X 1013 se "c 1

and zR - 1.8 Co.

Numerical Simulation

In order to confirm the above results, the wave equation for the

radiation is solved numerically. For a plasma with constant density, and a

driving current that results from the relativistic electron oscillations, the

wave equation can be written as

2

r +21 Jar,z) 21/2~~z (8
c 2  (1+a2) 1/ 2

16
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idm Of eUey vatlyag mlitude approximation was used. This equation is

ini a ui'oaWll with 64 x 64 transverse Fourier modes.

The InItIal transverse radiation profile was a Gaussian with zero

tavehocat we-vature. As the radiation propagated through the plasma, the

prtl.o developed finite but small amplitude "skirtsm indicating higher order

trawiwas Gaussian modes are Involved. The lie radius (at which the

apUtte is 1/e that on axis) is chosen to be the measure of the radiation

eepre. This is plotted as a function of z in Fig. 7 for the case when the

Initial normalized envelope x -Ra/(Rsoao ) is somewhat greater than that needed

for a matched beam. Figure 7 indicates that the envelope oscillates about the

predicted matched beam radius. The oscillatory behavior is no longer simply

haraiio, as implied by the above theory, and the oscillation wavelength is

approximately twice the predicted value. Notice that after the initial

transient, the maximum of the envelope oscillation is only about 2/3 of the

initial radius of the radiation. This discrepancy is probably due to the fact

that the profile deviates from its initially Gaussian shape. For the case

where the value of the initial normalized envelope x approaches that required

for a matched beam, the oscillation amplitude becomes very small and the

oscillatory behavior becomes more erratic.

In general, the numerical simulations support the conclusion that the

radiation envelope oscillates about the value required for matched beam

propagation.
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Tbe abve results indicate that relativistic electron quiver motion leads

t jmsed ftseing ot radiation beams. Physically, relativistic quivering

. Ot tie eeqtrns leads to an effective decrease in the plasma density via the

electrom plasma frequency",pe n(rz)w / where 1 + (rz). A

radiation field a2 (rz) peaked on axis at r - 0 will produce an index of

refraction profile v1(r,z) peaked on axis such that 3n/3r < 0, where

- ok/u - (I - *p(rz)/u2)1 2 . Since 3n/3r < 0, this implies focusing of the

radiation been.

The effects of relativistic self-focusing on the development of the

radiation envelope Ra(z) are best understood through the analogy of a single

oarticle with orbit RY(z) moving In an effective potential V(R3). As

discussed above, the shape of the potential V is determined by a single

parameter a - P/Pcrit' where the critical power is given by PcrLt " 17 x 109

os/os)2 Watts. Provided a > I (laser power greater than the critical power),

then there exists a minimum In the effective potential V located at

xfa f (), where x - R /(R a 0). As a is increased, the well depth

increases and becomes narrower, and the location of the minimum xf decreases.

The existence of such a well implies that bounded solutions for Rs(Z) are

possible where R,(z) oscillates between the two reflection points associated

with the effective potential. For example, if a > 1, a radiation beam

entering the plasma with an initial value of x greater than xf will initially

bein to focus (x decreases). When this occurs, two outcomes are possible:

I) the normalized envelope x(z) will continue to decrease to some minimum

value at which it will be reflected and expand indefinitely, or ii) the

envelope x(z) will remain bounded, oscillating indefinitely between the

minimum reflection point and its initial value. The occurrence of one or the

other of the above two cases depends on the initial "convergence angle" of the

18



.Melope Xz) as it enters the plasm or, more precisely, on the initial slope

d%/dz. If dR./dz is too large then case 1) occurs: the envelope is

reflected and expands indefinitely. If the initial dR./dz is sufficiently

smal.l, then case ii) occurs: the envelope becomes trapped in the potential

* well and oscillates about the minimum xf. Under a special set of initial

conditions, dR./dz - 0 and x - xf, it is possible to have a matched beam with

a constant envelope.

The following approximations were made in this analysis: the

mathematical model used In the above calculations was based on the ray

equations of geometrical optics. These ray equations then used a dispersion

relation for an electromagnetic wave in an unmagnetized plasma in which it was

assumed k2 >> k and 62 >> 2. The radiation beam was initially assumed to be

Gaussian and, furthermore, it was assumed to remain Gaussian as It propagated

through the plasm, a(rz) - (aoRso/Rs)exp(-r 2 /R2(z)). The last

approximation, which restricts the analysis to short pulses, assumes that the

background plasma density remains constant and does not evolve under the

influence of the transverse ponderomotive force. Such an approximation should

be valid for short pulse times T < Ro/C.

The results discussed above are in qualitative disagreement with those of

Schmidt and Horton, 2 0 who also analyzed relativistic self-focusing for short

pulses. They found a similar expression for Pcrit, beyond which self-focusing

occurs. They claimed, however, that for P > Pcrit the radiation beam would

collapse down to some minimum radius and neither oscillate nor reflect. This

is similar to the results of Max et al., 18 in which it was determined that

self-focusing occurs when a certain threshold is surpassed. Their analysis,

however, did not predict the envelope behavior once self-focusing occurs. The

above numerical simulition of the wave equation indicates that the correct

19
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avelope- bnvior Is an oscillation about the value required for a matched

The results of Felber,16 which included relativistic focusing along with

that of the equilibrium ponderomotive effect, are in qualitative agreement

with those presented above. Specifically, Felber 16 found that the behavior of

the radiation envelope could also be described as a particle In an effective

potential. Provided the laser power was sufficiently high, the potential

exhibited a minimum and, hence, either oscillating, bounded solutions or

reflected, diverging solutions were possible. The critical power in Felber's

case was similar to that found by Max, 1 5 pcrit * 2 x 10 4T(ev)w2 /w 2 Watts,

which is typically less than that discussed above when the effects of

ponderomotive focusing are neglected. The main limitation with the analysis

of Felber 1 6 and tax1 5 is that both used an equilibrium density response,

n - exp(ep /T) where # is the ponderomotive potential. Such an equilibrium

density response is invalid for the leading segment of the radiation pulse.
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Figure 2. The effective potential V (x) as a function or x - R 3/(R30 a 0)

rot' a 1.2. The veil minimum occurs at x. f 1.8.
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Ra -0.1 om, a/I -0a10.0 and a - 0.55. For this run

Poi M~1O11 W and w - 2.Jxl0?35001 Initially,
X -x- 1.8 and dx/dz -0.
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Figure 4. The radiation envelope Rs(z) for the parameters a *1.2,

Ra 0.1 on, &d/* - 10.0 and a0  0.54. For this run

Pon I1x 11W, ws 2.4x10'3see 1  Z R 4.1 cm and
A 08 44 am. Initially, x *1.02 x f and dx/dz -0.
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Figure 5. The radiation envelope R 3(z) for the parameters, a 1.2,

Raoa .1am, wi/o p 10.0 and a0 M 0.55. For this run

Porit ' 17x1011W, a, 2.14x1013sec-1, ZR -4.0 am and A 035 44 cm.

Initially, x - X 1.8 with a small slope dx/dz *0 (dR 3/dz

R so iZ 2, where z 0 0.1 am).
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figure 6. The radiation envelope R,(z) for the parameters

a- 1.2, Ra a 0.10cm, W/W -o 10.0 and a0 . 0.114. For this
run Porit 17lx10 t1U, w - 9.14x1013 ec- and z 16.0 am.

Initially, R8 - R 30 0 + z 2 /zR2)1 12 with z o/z R 1/3.
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Figure T. The 1/e radial width in terms of x -R 3/(R30aa) as a function of

z (in am) as determined by numerical simulation of Eq. (38). For

this run, a 5 w/w - 10, a~ 0 2.21 and R so 0.11 am.
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